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Abstract— The increasing complexity of operations in the 

maintenance service industry necessitates sophisticated 

approaches to forecasting spare parts demand. This study 

introduces a robust forecasting framework using advanced 

machine learning techniques to address the inefficiencies and 

inaccuracies associated with traditional forecasting methods. 

Focusing on ATM supply chain operations, we implement and 

evaluate three predictive models: Linear Regression, Long Short-

Term Memory (LSTM) networks, and an Enhanced Time-Series 

model with Bidirectional LSTM and Dropout Regularization. 

Data preprocessing was rigorously performed on a comprehensive 

dataset, including information from maintenance activities, part 

specifications, and supply chain parameters. The development of 

the Spare Part Operational Demand Index (SPODI) was pivotal, 

integrating multiple predictive factors into a single, actionable 

metric to refine the predictive maintenance strategy. This study is 

one of the first to empirically examine the efficacy of LSTM 

networks in the context of spare parts demand forecasting, 

revealing their superior ability to capture complex, long-term 

patterns. The Linear Regression model served as a baseline, 

demonstrating modest predictive power primarily for lower to 

medium usage levels. In contrast, the LSTM network showed 

significant enhancements in accuracy, particularly for higher 

demand values, through its ability to learn from temporal 

sequences. The Enhanced Time-Series model, incorporating 

Bidirectional LSTM and Dropout Regularization, surpassed other 

models, achieving the highest accuracy, as demonstrated by its 

close adherence to the perfect prediction line and the sharply 

peaked residuals distribution. Our findings highlight the 

importance of the 'SPODI Score' within the LSTM-based models, 

validating its role as a key indicator of demand. The progression 

from Linear Regression to Enhanced LSTM models underlines a 

transformative shift towards data-driven forecasting, with 

machine learning algorithms offering a potent tool for predictive 

accuracy and efficient inventory management. This study 

contributes substantial insights into the field of predictive 

maintenance, emphasizing the need for dynamic, AI-driven 

approaches to spare parts demand forecasting, ultimately 

enhancing service quality and cost efficiency in the maintenance 

service sector. 

I. INTRODUCTION

Effective company performance hinges on the efficient 

execution of all internal and external activities, alignment with 

strategic guidelines, and continuous resource optimization. 

Central to these activities is the management of purchase orders, 

which formalize the acquisition of goods necessary for business 

operations. Accurate and detailed purchase orders ensure error-

free transactions and support sector-specific demands within the 

company, underpinning competitiveness and cost optimization 

(Boylan & Syntetos, 2010; Sheikh et al., 2000; Rego & 

Mesquita, 2011). The shift towards data-driven forecasting, 

especially machine learning algorithms, is revolutionizing 

resource optimization and predictive modeling in purchase 

orders. Unlike traditional methods, these algorithms adjust 

predictions based on new data, embodying a dynamic approach 

to forecasting that is essential in the rapidly evolving business 

environment (Dombi et al., 2018; Kalchschmidt et al., 2003; 

Zhang et al., 2021). 

In the realm of spare parts management, the challenge of 

accurately predicting and analyzing demand is a critical concern 

that has garnered substantial attention within the academic and 

industrial sectors. The literature reveals a significant gap in the 

effective prediction mechanisms for spare parts demand, which 

is inherently tied to a multitude of factors, resulting in a high 

degree of randomness. The conventional approach adopted by 

many enterprises leans heavily on the experiential acumen of 

production operators to devise demand plans, a practice that 

often lacks a robust forecasting framework, leading to 

inefficiencies such as the "bullwhip effect" where the 

amplification of demand uncertainty results in excessive 

inventory accumulation and sluggish turnover rates (Käki, 2007; 

Hemeimat et al., 2016). This underscores the imperative for 

establishing a more scientific and comprehensive spare parts 

inventory management system, one that is grounded in 

predictive accuracy to ensure optimal supply levels without 

incurring unnecessary capital and maintenance costs (Auweraer 

& Boute, 2019). 

The discourse extends into the strategic outsourcing of 

maintenance and its integration with spare parts management, 

highlighting the evolution of maintenance from a peripheral to a 

core activity within various sectors, notably in avionics. 

Outsourcing, driven by motivations such as cost reduction, skill 

enhancement, and service level optimization, introduces a 

nuanced framework for managing spare parts, encompassing 

operative maintenance, maintenance management, contractual 

management, and spare parts management. This multi-faceted 
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approach not only addresses the logistical aspects but also 

emphasizes the decision-making frameworks that govern the 

stocking, inventory levels, and component classification of spare 

parts, crucial for mitigating risks associated with lumpy demand 

and ensuring efficient service provision (Macchi et al., 2016; 

Tarakci, 2007; Harland, 2003). 

Alhamrani Universal (AU) exemplifies the need for improved 

forecasting in its ATM supply chain operations. Despite its 

substantial market share, AU faces challenges in maintaining 

accurate inventory levels for ATM spare parts, leading to 

increased costs and compromised service delivery. This study 

focuses on analyzing and enhancing AU's forecasting models to 

bridge the gap between theoretical and practical outcomes, 

thereby reducing inventory costs and improving service quality. 

The escalating complexity of operations necessitates the 

adoption of sophisticated data-driven forecasting methods. 

Technological advances bring about intricate challenges 

involving multiple factors such as customer demand, resource 

availability, and equipment performance, which require a 

profound understanding for effective management (Salmeron, 

2019). Traditional forecasting methods fall short in accuracy, 

leading to inefficiencies and elevated costs. In contrast, machine 

learning algorithms enhance forecasting accuracy by 

incorporating real-time changes across numerous variables, 

enabling more precise resource allocation and bolstering 

operational performance (Miller S., 2021; Morariu, 2020). 

Furthermore, data-driven techniques facilitate proactive 

decision-making by predicting future demands and identifying 

potential risks in advance, thus improving the decision-making 

process and overall service quality (Data-Driven Decision 

Making: Management with Analytics, n.d.). The integration of 

machine learning into maintenance service operations promises 

to elevate accuracy and drive long-term business success. 

Advancements in AI and machine learning, particularly Long 

Short-Term Memory (LSTM) networks (Figure 1), are 

highlighted for their potential to improve maintenance service 

management significantly. The study will evaluate the efficacy 

of LSTM networks in capturing complex, long-term patterns in 

spare part demand forecasting, offering a potential path to 

improved decision-making and long-term business success 

(Salmeron, 2019; Miller S., 2021; Morariu, 2020). 

Figure 1 LSTM architecture model illustration. 

II. CASE STUDY

A. Data Set Description

The challenge presented by the dataset on ATM machine parts 

is critical to the operational efficiency of banking services. At its 

core, the problem consists of forecasting the monthly demand 

for each individual part required for ATM maintenance, a task 

pivotal for ensuring that ATMs remain functional with minimal 

downtime. This predictive task is not merely about maintaining 

an optimal inventory level but also about preventing potential 

disruptions in ATM services that can affect customer 

satisfaction and trust. The complexity of this problem is 

highlighted by the variability in part failure rates, which can be 

influenced by factors such as usage frequency, environmental 

conditions, and the inherent durability of the parts. Addressing 

this challenge necessitates a comprehensive understanding of 

both the operational dynamics of ATMs and the logistical 

considerations of supply chain management. By accurately 

predicting part demand, banks can streamline their maintenance 

operations, reduce costs associated with emergency 

procurement, and ultimately enhance the reliability of their 

ATM networks. 

Regarding the data parameters provided, the dataset 

encompasses a broad spectrum of information crucial for 

analyzing and predicting ATM part requirements. The 'SC' 

parameter stands for Supply Chain, indicating the logistics and 

processes involved in procuring, storing, and distributing the 

parts. Each parameter—ranging from 'Completion Date', which 

marks the finalization of a maintenance activity, to 'SLA 

Response', denoting the service level agreement compliance 

time—plays a significant role in understanding the lifecycle and 

demand of ATM parts. 'Part No' and 'Part Description' offer 

specifics about the components, while 'Qty' (Quantity) reflects 

the consumption rate, crucial for demand forecasting. 'TID 

Description' provides insights into the ATM models or locations, 

potentially influencing part failure rates. 'Employee ID' and 

'Employee Name' link maintenance activities to personnel, 

offering a layer of detail that could be instrumental in identifying 

training needs or performance-related trends. Together, these 

parameters form a comprehensive dataset that, when effectively 

analyzed, can significantly optimize inventory management and 

maintenance scheduling in the ATM service ecosystem. 

B. Data Pre-processing

The code outlines a series of data preprocessing steps essential 

for preparing the dataset for analysis. Initially, data is collected 

and then loaded into a Pandas DataFrame from a specified file 

path, setting the stage for subsequent manipulations. To 

maintain the dataset's integrity, any rows with missing values are 

removed, ensuring that the analysis remains accurate and 

reliable. Following this, the index is reset to ensure continuity, 

which is vital for data integrity and future access. The text data 

within the 'Part No' and 'Part Description' columns undergo 

standardization by trimming leading and trailing spaces and 

converting all text to uppercase, thus ensuring consistency and 

preventing duplicates due to case sensitivity or space 

discrepancies. 

Further preprocessing includes converting 'Reported Date' and 

'Completed Date' into a datetime format, which is crucial for 

conducting time-based analyses. The duration between these 
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dates is calculated to gauge the time taken for part replacement 

or maintenance, subsequently formatted into 'hh:mm' for 

uniformity and straightforward interpretation. This duration is 

then converted into decimal hours, enabling quantitative 

analysis. To ensure a focused analysis on typical cases, the 

dataset is filtered to remove the top 10% of outliers in quantities 

and durations based on their respective quantiles. Data types are 

adjusted for 'Employee ID', 'Qty', and 'SLA Response' columns 

to align with their content and to facilitate proper analysis. The 

'Activity Item' column is renamed to 'Machine' for enhanced 

clarity and representation. Lastly, the year and month are 

extracted from the 'Reported Date' into separate columns, 

allowing for a nuanced examination of trends and patterns over 

time, enhancing the depth and quality of the subsequent 

analyses. Each step is meticulously designed to refine the 

dataset, making it suitable for developing predictive models. 

This preprocessing not only enhances the dataset's quality but 

also tailors it for specific analytical purposes, such as forecasting 

part demand. 

C. The Spare Part Operational Demand Index (SPODI)

After the data is cleansed, the code proceeds with several steps 

to organize and extract meaningful insights from the dataset, 

which can be described as follows: 

The DataFrame is first sorted by 'Part No', 'Supply Chain (SC)', 

and 'Completed Date' to systematically arrange the records. This 

sorting is crucial for tracking the usage and replacement patterns 

of the ATM parts. A new column, 'Next Damage Date', is then 

calculated by shifting the 'Completed Date' of the subsequent 

record within each group of 'Part No' and 'SC'. This step is 

instrumental in determining when a part might fail next, which 

is a key factor in predicting future part demands. The 'Time Until 

Damage' is introduced to measure the interval between part 

replacements and is then converted into a more practical unit, 

specifically days, resulting in the 'Time Until Damage Days' 

column. To encapsulate the average time until a part is damaged 

again, the mean 'Time Until Damage Days' for each part and 

supply chain combination is calculated, giving us an average that 

can be used for further analysis. 

In preparation for the Spare Part Operational Demand Index 

(SPODI), the dataset is sorted again by 'Part No', 'Year', 'Month', 

and 'Reported Date'. This multilevel sorting is pivotal for 

detailed temporal analysis. The monthly and yearly usage of 

each part is aggregated to reflect the frequency of part demand 

over different timeframes. Average duration is computed to 

reflect the typical time parts spend in service before being 

replaced, and employee involvement is quantified to indicate 

which parts are most frequently handled by maintenance staff. 

The code also accounts for the influence of the supply chain, if 

applicable, by determining the size of the grouped dataset for 

each 'Part No' and 'SC'. This reflects the impact of supply Center 

dynamics on part replacement frequency. All these metrics are 

then merged into a single DataFrame to form the basis of the 

SPODI score, which is a composite index designed to indicate 

the demand for each part. Each component of the SPODI 

score—average duration, employee involvement, supply chain 

influence, and average time until damage—is weighted 

according to its perceived importance in determining part 

demand. The Spare Part Operational Demand Index (SPODI) is 

an innovative composite metric crafted to accurately forecast the 

demand for ATM spare parts. The motivation behind developing 

the SPODI index is to refine the predictive maintenance strategy 

by integrating several predictive factors into a single, actionable 

figure. This index assists in optimizing stock levels in 

warehouses, ensuring that the supply chain operates smoothly, 

and that ATM downtime is minimized by having the necessary 

spare parts available when needed. By leveraging historical data 

and operational metrics, the SPODI index anticipates the 

frequency and urgency of part replacements, thus facilitating 

informed decision-making for maintenance scheduling and 

inventory management. To determine the relative importance of 

each parameter within the SPODI index, a correlation matrix is 

utilized. This matrix is a statistical tool that helps to identify the 

strength and direction of the linear relationships between the 

variables. By plotting a heatmap of these correlations, we gain 

visual insights into how each factor is associated with others, 

particularly their influence on spare part demand. 

From this correlation matrix, the weighting factors for the 

SPODI index calculation can be derived. For example, if the 

'Average Duration' has a high positive correlation with the actual 

part usage, it might be assigned a higher weight in the SPODI 

score formula. Conversely, parameters with lower or negative 

correlations might receive smaller weights. The final SPODI 

score for each part can be calculated using a formula like the 

following: 

SPODI Score=ω_1  × Avg.duration+ω_2×Employee 

Involvement+ω_3×SC Influence+ω_4× Avg Time Until 

Damage Eq. 1 

where ω_1, ω_2, ω_3, and ω_4 are the weights derived from the 

correlation coefficients. 

When analyzing the performed correlation matrix heatmap 

Figure 2, it is vital to interpret the values correctly to understand 

their implications for the SPODI score. Each cell in the heatmap 

represents the correlation coefficient between two variables, 

which can range from -1 to 1. A coefficient of 1 indicates a 

perfect positive correlation, -1 indicates a perfect negative 

correlation, and 0 indicates no correlation. 

Figure 2 Correlation matrix of the spare parts metrics 
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Using the correlation coefficients provided from the correlation 

matrix heatmap, we note the following relationships: 

Average Duration: A coefficient of -0.27 suggests a weak 

inverse relationship with monthly usage, implying that as the 

average duration increases, the monthly usage of the spare part 

slightly decreases. 

Average Time Until Damage: Similarly, a coefficient of -0.16 

indicates a weak inverse relationship with monthly usage. 

Employee Involvement and SC Influence: Both have a strong 

positive correlation of 0.92 with monthly usage, suggesting that 

as employee involvement or SC influence increases, the usage 

of the part also increases significantly. 

To calculate the weighting factors for the SPODI index, we will 

first normalize these coefficients by converting them to their 

absolute values and summing them up, which will form the 

denominator of our weight calculations. Each weight is then the 

absolute value of the individual correlation coefficient divided 

by this sum. Utilizing the correlation matrix values, the 

weighting factors for each parameter were calculated using the 

normalization equation. The resulting weights, which reflect the 

relative importance of each parameter in the Spare Part 

Operational Demand Index (SPODI), are as follows: Average 

Duration received a weight of approximately 0.119, indicating a 

lesser impact on the SPODI score due to its negative correlation. 

Average Time Until Damage, also negatively correlated, was 

assigned a weight of about 0.070. Employee Involvement and 

Supply Center (SC) Influence, both with strong positive 

correlations, emerged as the most impactful factors with equal 

weights of approximately 0.405 each. These weights serve as 

multipliers in the SPODI score formula (Eq. 1), quantitatively 

expressing the influence of each factor in predicting the monthly 

demand for spare parts. 

D. Applying Machine Learning Algorithms

1. Linear Regression Model

To fit the data and evaluate the predictive model, the study

employs a systematic approach using the Python library scikit-

learn, which is renowned for its comprehensive machine

learning capabilities. The process begins with the selection of

variables for the model, where 'Part No Encoded', 'Year',

'Month', and 'SPODI Score' are chosen as independent variables

(X) due to their potential impact on predicting 'Monthly Usage',

the dependent variable (y). This choice is predicated on the

hypothesis that these factors collectively influence the monthly

demand for spare parts.

The dataset is then partitioned into training and testing sets using

the `train_test_split` function, with an allocation of 80% for

training and 20% for testing, ensuring a representative sample

for model training while reserving a subset for unbiased

evaluation. The `random_state` parameter is set to ensure

reproducibility of results.

A Linear Regression model is applied and fitted with the training

data, assuming a linear relationship between the selected

features and the monthly usage of spare parts. Following the

model training, predictions are made on the test set.

The model's performance is assessed through two primary

metrics: the Mean Squared Error (MSE) and the R-squared (R²)

value. The MSE provides a measure of the average squared

difference between the observed actual outcomes and the

predictions by the model, offering insight into the magnitude of 

the error. It can be calculated through the following equation:  

MSE=1/M ∑_(m=1)^M▒〖Y ̌_m-Y_m 〗 Eq. 2 

where  Y _̌m  represents the forecasted value of CCI for a 

specific month during the test period; Y_m denotes the actual 

CCI value for that month within the test dataset; and M signifies 

the total count of observations within the test dataset. A lower 

MSE value for a predictive model indicates its high accuracy in 

forecasting. The R² statistic, on the other hand, offers a measure 

of the proportion of variance in the dependent variable that is 

predictable from the independent variables, serving as an 

indicator of the model's explanatory power. 

2. Long Short-Term Memory (LSTM) networks

In advancing the model fitting process, a sophisticated approach

involving Long Short-Term Memory (LSTM) networks

(Graves, Long Short-Term Memory, 2012), part of the

TensorFlow Keras framework, is employed. This method is

particularly suited for predicting time-series data due to LSTM's

ability to remember long-term dependencies. Initially, both the

features and target variables are normalized using the

MinMaxScaler to a range between 0 and 1, ensuring that the

LSTM model receives data within a scale it can efficiently

process.

The LSTM network requires the input data to be in a specific

format of [samples, time steps, features]. For this

implementation, each data point is treated as a sequence with

one time step and multiple features. Following the scaling, the

dataset is divided into training and test sets, maintaining an 80-

20 split, with a random state set for reproducibility of results.

The Sequential model architecture is defined with an LSTM

layer, containing 50 units to capture the temporal dependencies

within the data, followed by a Dense layer for output prediction.

The model is compiled with the Adam optimizer and mean

squared error loss function, aiming to minimize the difference

between predicted and actual values.

To mitigate the risk of overfitting, an Early Stopping callback is

utilized. This halts the training process when the validation loss

ceases to decrease, ensuring the model retains generalizability.

The model undergoes training over 100 epochs with a batch size

of 32, with performance validated against a portion of the

training set. Post-training, predictions are made on the test set

and rescaled to their original range for accurate evaluation. The

model's effectiveness is quantified through the MSE and R2

metrics, providing insight into its predictive accuracy and the

variance explained by the model, respectively. This advanced

fitting process exemplifies the application of deep learning

techniques in time-series forecasting, showcasing their potential

for high accuracy in predictive tasks.

E. Enhanced Time-Series Forecasting with Bidirectional

LSTM and Dropout Regularization

To further enhance the predictive model, an augmented LSTM 

architecture (Graves, Fernández, & Schmidhub, 2005) is 

implemented, incorporating Bidirectional LSTM and Dropout 

layers, leveraging the TensorFlow Keras library. This advanced 

configuration is designed to capture both forward and backward 

dependencies in the data, offering a more nuanced 

understanding of temporal patterns. 
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The preprocessing phase involves scaling both the features (X) 

and the target variable (y) using MinMaxScaler to normalize the 

data within the range [0, 1]. This normalization facilitates the 

model's learning process by providing data within a consistent 

scale. The scaled features are reshaped to match the LSTM's 

expected input format of [samples, time steps, features], treating 

each data point as a sequence of one time step with multiple 

features. 

The model is structured as a Sequential model, beginning with a 

Bidirectional LSTM layer with 50 units, enabling the model to 

learn from sequences in both forward and backward directions. 

This layer is followed by a Dropout layer with a rate of 0.2 to 

prevent overfitting by randomly omitting a fraction of the 

neurons during training. Subsequently, a second LSTM layer 

with 100 units captures complex dependencies without returning 

sequences, leading to a final Dropout layer and a Dense output 

layer for prediction. The model is compiled with the Adam 

optimizer (P. Kingma & Ba, 2014) and mean squared error loss 

function, targeting minimization of the difference between 

predicted and actual values. Training is guided by an Early 

Stopping callback set to monitor validation loss, with a patience 

of 20 epochs, to halt training when improvements cease, thereby 

ensuring the model does not overfit. 

After training for up to 200 epochs with a batch size of 64, the 

model's predictions are inversely transformed to their original 

scale for accurate evaluation. The model's performance is also 

assessed using the MSE and R² metrics, measuring the average 

squared difference between the predicted and actual values, and 

the proportion of variance explained by the model, respectively. 

III. RESULTS

The study embarked on evaluating three distinct modeling 

approaches to predict monthly usage of ATM machine parts, 

revealing varied performance levels as shown in Figure 1. 

Initially, a Linear Regression model was developed, yielding 

MSE of 193.755 and an R-squared of 0.85. This baseline model, 

despite its straightforward application, suggested room for 

improved accuracy. 

Transitioning to LSTM networks, it showed a significant 

enhancement in forecasting accuracy, with a reduction in MSE 

to 98.07 and an increase in R-squared to 0.92 after 100 training 

epochs. This improvement highlighted the LSTM's capability to 

effectively learn from temporal data sequences, offering a more 

accurate prediction model. 

The final model, Enhanced Time-Series Forecasting with 

Bidirectional LSTM and Dropout Regularization achieved the 

best performance in our study. After 200 epochs of training, it 

recorded an MSE of 71.24 and an R-squared of 0.94, 

demonstrating the highest forecasting accuracy among the 

evaluated models. The incorporation of bidirectional LSTM 

layers allowed for a comprehensive analysis of temporal 

dependencies, while dropout regularization helped prevent 

overfitting. 

Figure 1 Comparison of the prediction capability of each model 

A. Linear Regression Model Analysis

The linear regression model analysis began with the examination

of the relationship between the actual and predicted monthly

usage of ATM spare parts in Figure 2(a). The diagonal dashed

line represents the line of perfect prediction. Observations

clustered around this line indicate accurate predictions. The

spread of data points along the diagonal shows that the model is

generally effective in predicting lower and medium values of

monthly usage. However, as the actual monthly usage increases,

the predictions become more dispersed, suggesting that the

model's accuracy decreases for higher values of spare part usage.

This dispersion points to potential limitations of the Linear

Regression model in capturing the complexity of higher usage

patterns, potentially due to non-linear relationships not

accounted for in the model.

The histogram in Figure 2(b) showcases the distribution of

residuals — the differences between the predicted and actual

values. The distribution appears to be roughly normal and

centered around zero, which suggests that the model does not

have a systematic bias; it is just as likely to overestimate as to

underestimate the monthly usage. The presence of longer tails

indicates some predictions with large errors, which could be due

to outliers in the data or instances where the model's assumptions

do not hold. This can be a concern for the maintenance service

provider, as significant underestimation or overestimation of

spare part demand could lead to either stockouts or excess

inventory.

The feature importance graph in Figure 2(c) reveals the weight

of each feature in the Linear Regression model. 'Part No

Encoded' has the most significant negative influence on the

model's predictions, suggesting that certain parts are likely

associated with decreased usage. This could imply that the

model recognizes specific parts that have a lower turnover rate,

which could be indicative of their longer life span or lower

failure rate. 'Year' also has a negative coefficient, indicating a

trend of decreasing usage over time, possibly due to

improvements in part durability or ATM technology.

Surprisingly, 'SPODI Score' has a relatively small positive

coefficient, which contrasts with expectations given its intended

role as a comprehensive indicator of demand.
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Figure 2 Summary of linear regression analysis 

B. Long Short-Term Memory (LSTM) network

The implementation of the LSTM network for forecasting the 

monthly usage of ATM machine parts marks a significant 

advancement over the linear regression model. The LSTM's 

architecture is inherently suited for the time-series nature of the 

dataset, given its proficiency in capturing long-term temporal 

dependencies, a critical feature for accurately predicting spare 

parts demand. 

Upon examination of the LSTM model results, the actual vs. 

predicted values scatter plot presented in Figure 3(a) indicates a 

strong alignment along the line of perfect prediction. This 

alignment suggests that the LSTM model can closely 

approximate the actual demand, particularly notable for higher 

values where linear regression had shortcomings. The model’s 

capacity to handle nonlinear relationships and temporal 

sequences evidently contributes to its enhanced accuracy. 

The residuals distribution chart shown in Figure 3(b) exhibits a 

narrow, concentrated peak, which implies that the LSTM 

predictions are typically close to the actual values with fewer 

and less significant outliers than those observed in the linear 

regression model. This distribution indicates a better fit to the 

data and suggests a higher consistency in the model’s predictive 

capability. 

Feature importance derived from the LSTM model via 

permutation (Figure 3(c)) highlights the dominant role of the 

'SPODI Score' in predicting demand. This finding corroborates 

the premise that integrating multiple operational metrics into a 

composite score effectively captures the complexities of spare 

parts usage. The dominance of the 'SPODI Score' validates the 

effort invested in creating this index as a cornerstone for the 

forecasting model. 

In conclusion, the LSTM network provides a robust framework 

for forecasting spare parts demand. Its strengths in dealing with 

time-series data, accounting for non-linear patterns, and 

leveraging the constructed 'SPODI Score' demonstrate a 

significant leap forward in predictive accuracy. This positions 

LSTM networks as a powerful tool for maintenance service 

providers, enabling more efficient inventory management and 

reducing the risk of service disruptions due to spare parts 

shortages. 

Figure 3 Summary of LSTM results 

C. Enhanced Time-Series Forecasting with Bidirectional

LSTM and Dropout Regularization

In the pursuit of a sophisticated forecasting framework for ATM 

spare parts, the Enhanced Time-Series Forecasting model using 

Bidirectional LSTM and Dropout Regularization has 

demonstrated commendable accuracy and robustness, as 

evidenced by Figure 4. The scatter plot (Figure 4(a)) presents a 

dense concentration of points closely hugging the dashed 

diagonal line, which signifies the line of perfect prediction. This 

illustrates that the Enhanced LSTM model has a high degree of 

precision in forecasting the monthly demand for spare parts. The 

model excels at predicting both lower and higher ranges of 

actual monthly usage, with a particularly impressive capture of 

trends in the upper usage spectrum, where linear models might 

falter. The model's ability to grapple with complex, non-linear 

patterns in the time series data is a testament to the efficacy of 

the Bidirectional LSTM architecture. 

The residuals histogram (Figure 4(b)) indicates a normal 

distribution with a sharp peak and minimal skew, centered 

around zero. The symmetry of this distribution around the origin 

suggests that the model predictions are unbiased and errors are 

evenly distributed on either side of the perfect prediction. The 

presence of a very narrow peak signifies that the majority of 

predictions are extremely close to the actual values, with few 

instances of large prediction errors. 

In the feature importance bar graph (Figure 4(c)), the 'SPODI 

Score' emerges with a dominant negative weight, which may 

initially appear counterintuitive. However, considering the 

nature of permutation importance, this indicates that the 'SPODI 

Score' has a substantial impact on the predictive power of the 

model; when its values are permuted, the accuracy of the model's 

predictions changes significantly. This highlights the pivotal 

role of the 'SPODI Score' in driving the forecast accuracy for 

spare part demand and agrees with the fundings of applying 

LSTM networks. Conversely, the 'Part No Encoded' feature 

exhibits the least importance, indicating that the model does not 

rely heavily on this feature for its predictions. 

International Journal of Engineering Research & Technology (IJERT)

ISSN: 2278-0181http://www.ijert.org

IJERTV13IS030200
(This work is licensed under a Creative Commons Attribution 4.0 International License.)

Published by :

Volume 13, Issue 03 March 2024

www.ijert.org
www.ijert.org


Figure 4 Enhanced Time-Series Forecasting with Bidirectional 

LSTM analysis summary 

D. Enhancing the predictive ability of the models

The Linear Regression model laid the groundwork, offering a 

straightforward approach that proved to be generally effective 

for lower to medium ranges of monthly usage. However, the 

model's predictive ability waned as usage increased, a limitation 

highlighted by the dispersion of data points at higher usage 

levels. This deviation signaled the model's struggle with 

complex patterns that were not linearly correlated, which are 

essential to grasp for maintaining service levels in the face of 

variable demand. 

The transition to the LSTM network marked a significant step 

forward. Unlike its predecessor, the LSTM network could 

account for long-term temporal dependencies, a feature 

quintessential to the time-series nature of the demand data. The 

actual vs. predicted values from the LSTM model exhibited a 

tighter clustering around the line of perfect prediction across the 

full range of usage, including the higher values where the Linear 

Regression model faltered. The residuals distribution revealed a 

marked improvement, showcasing a narrowed concentration 

indicative of a better fit and higher consistency. 

The pinnacle of the forecasting models evaluated was the 

Enhanced Time-Series model with Bidirectional LSTM and 

Dropout Regularization. This model not only maintained the 

LSTM's proficiency in understanding time-related dependencies 

but also introduced bidirectional data processing to capture 

patterns across both past and future sequences. This 

comprehensive temporal understanding, coupled with dropout to 

avoid overfitting, resulted in the most accurate model. It 

demonstrated an impressive precision in forecasting, robust even 

at the extremes of the usage spectrum, and outperformed the 

other models in terms of residuals distribution and adherence to 

the perfect prediction line. 

Across the models, the importance of features varied. Notably, 

the 'SPODI Score' emerged with significant influence in the 

advanced models, validating its design as a comprehensive 

indicator of demand. It was in the LSTM-based models that the 

'SPODI Score' realized its potential, indicating that the 

sophistication of these models could unlock the full predictive 

power of the composite score. 

IV. CONCLUSION

The comparison of the traditional Linear Regression approach 

with the advanced LSTM and Enhanced Time-Series 

Forecasting models underscores a transformative shift towards 

more dynamic, data-driven forecasting methods. The LSTM 

network, with its ability to navigate time-series data and unearth 

non-linear patterns, provides a more refined and accurate 

prediction model. This is further improved upon by the 

Enhanced LSTM framework, which employs Bidirectional 

LSTM and Dropout Regularization, delivering a high-precision 

tool capable of adeptly managing the complexity inherent in 

spare part demand forecasting. 

The culmination of these advancements positions the LSTM 

networks, particularly the Enhanced Time-Series Forecasting 

model, as a significant tool for maintenance service providers. 

By achieving higher forecasting accuracy and more efficient 

inventory management, these providers are better equipped to 

avoid service interruptions and the associated costs. This 

research contributes noticeable insights to the field of predictive 

maintenance, facilitating a move away from reliance on 

historical averages and expert judgment towards embracing the 

sophistication of machine learning algorithms. 

Overall, the study underscores the importance of selecting an 

appropriate forecasting model tailored to the specific complexity 

of the demand patterns for spare parts. As the field progresses, 

the continued refinement of predictive frameworks such as the 

SPODI index and the exploration of advanced neural network 

architectures are anticipated to further enhance the robustness 

and reliability of demand forecasting in the maintenance service 

sector. 
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